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Table 12. Neutron scattering amplitudes and thermal parameters obtained for CaF:,  SrF 2 and BaF2 

CaF2 SrF2 BaF2 
b~i 0.488 0.688 (0.013) 0.522 (0.13) × 10 -12 cm 
0~ 6"30 5-63 (0.011) 4"71 (0.04) x 10 -12 erg. A,-2 
c~r 4"58 3.77 (0.06) 3.04 (0"01) x 10 -12 erg. /t~-2 
- f i r  5"66 (1"16) 3"95 (0"46) 3"06 (0"26) x 10 -12 erg. ,Z?k-3 
--flr/~F 1.24 (0.25) 1.05 (0.12) 1.01 (0.09) A-x 
O~M/~F 1"38 1"49 (0"03) 1"55 (0"01) 
BM 0"507 0"567 (0"011) 0"678 (0"005) ~2 
Br 0.697 0.846 (0.013) 1.048 (0"004) ,~k 2 
BM/a 2 1-70 1"69 (0"03) 1"76 (0"01) x 10-2 
Br/a 2 2"34 2"51 (0-04) 2"73 (0"01) x 10-2 

for the nuclear scattering ampli tude of strontium of  
bsr=0"688 (+0-013) x 10 -lz cm, assuming a value of  
bF=0"560 ( + 0 . 0 1 0 ) x  10 -12 cm. The new value of  bsr 
is appreciably larger than the previously tabulated val- 
ues of  0.57 x 10 -12 cm (International Tables for X-ray 
Crystallography, 1962) and 0.656 x 10 -12 cm (The Neu- 
tron Diffraction Commission,  1969), but is in excellent 
agreement with the value of  0.683(+ 0.007)x 10 -12 cm 
given by Loopstra & Rietveld (1969). 

The present measurements  give further confirmation 
of  the importance of  anharmonic  effects for atoms oc- 
cupying tetrahedral sites in the fluorite structure and it 
is to be expected that these considerations can be ex- 
tended to other types of structure. Neutron diffraction 
measurements  on a number  of  other relatively simple 
structures are in progress to investigate this further. 
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A mathematical technique is described which combats the innacuracies in absorption corrections 
applied to single-crystal X-ray diffraction data due to indefinite location of the crystal faces. 

Introduction 

The purpose of  this paper is to demonstrate the feasi- 
bility of  correcting errors inherent in the calculation of  
absorption corrections. Here a method is described for 
calculating the magnitude of  the absorption error as- 

sociated with the fixing of  the planes defining a crystal. 
The effectiveness of  the method is studied by using a 
least-squares correlation of common reflexions ob- 
tained from different data collection geometries. The 
orientation of  the defining planes of a crystal may  
reasonably be regarded as without error and only the 
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distances of these planes from an internal origin were 
corrected. 

Theory 

Intensities of X-ray reflexions from one or more single 
crystals of a compound may commonly be separated 
into zones. The ith zone is that collection of intensities 
with a common scale constant k~. Correlation of these 
zones of data is obtained by having values of IF(hkl)l z 
measured in more than one zone. Since it is possible 
to measure IF(hkl)l e with different geometries (imply- 
ing either a different crystal or different directions of 
the incident and emergent beam with respect to the 
unit-cell axes), it is also possible to make minor correc- 
tions to the size and shape of the crystal to improve 
the estimation of the absorption factors and to calcu- 
late correct values of IF(hkl)l e. Indeed, both of these 
procedures may be carried out in the same single cycle 
least-squares calculation. 

The correct values of [F(hkl)[ e in the ith zone may 
be written as 

F~=k~ \ Am ! 

where k~ is the scale constant, FoZ~ is the almost correct 
value of [F(hkl)[ 2 using the almost correct absorption 
coefficient Ao,~. Ah~ is the correct absorption coefficient. 

e x p  { -  fl(rin-t- rout) }d V 
Aht = ~ dV 

where the integrations are over the crystal. 
We minimize the sum of the weighted residuals 

squared. 
R =  ~ Wmj{ln (F2~)-ln (F2j)} 2 

h,i,j 

where the sum is over the reflexions, h, having inde- 
pendent measurements in zones i and j. By using the 
logarithms we are looking at ratios of values of [F(hkl)[ e 
rather than absolute differences between values (Rae, 
1965). 

The residuals A,~j=ln ( F ] 3 - 1 n  (F~j) may be ex- 
panded as 

( A h i ]  
Ahl J : In k~ - I n k  j -  In \ A0~ ! 

+In  \ Aohj ! +In  \-~-~o,j I . 

We can express In (Ah~) in a Taylor expansion using as 
variables dq = (Rq- Ro~)/Roq where R~ is the correct dis- 
tance from the internal origin to the qth defining plane, 
and Roq is the assumed value. 

In (Ant) = In (Aon~) + ~ a, iqdq + higher terms 
q 

where 

ah'~= ( ~ I n A h O  Aoml (-~dqA~')o (1) 

evaluated for the assumed parameters R0~. 

The orientation of the defining planes, usually de- 
fined by Miller indices, are regarded as without error. 
Higher terms in the Taylor expansion can be ignored 
if the assumed crystal is almost correct: otherwise an 
iterative procedure is necessary. 

We thus obtain a residual 

F2ohi 
Ak,j=In k , - l n  k j -  E (amq--ahjq)dq +ln  F~h~- 

q 

which is linear in the variables In k~ and dq. The sum- 
mation of q is over all planes of all crystals, am~ being 
zero when the qth plane is not involved in calculating 
Fo~. 

We may generalize the expression to 

N 

AhfJ  = VOhij "31- E Vkhl jUk 
k = l  

where 

V°*'j=ln \ - F ~ ]  and Vkhij = - ~ ;  Ahi j • 

uk is the kth of the total N variables. 

Ill ,  U2, • • • l'ln, / '/n+l, Un+2, • • • Un+n' ,  U n + n ' + l ,  

Un+n,+2,  . . .  Un+n'+n '"  

corresponds to 

In kl, In k2, . . .  In k,, dl, d2, . . .  d,,, 
dn,+l,d~,+2,...d,,,+,,,, 

where there are n zones, n' faces on the first crystal, 
n" faces on the second crystal, etc. 

By putting 

c~u~ ~ Wh'J(Amj)2 = 0 k = l , N  
h, t , j  

we obtain the linear equations 

where 

N 

E BkmUm = C k  k :  1,N 
m=l  

Bkm= E W h t j V k h i j ~ m h i j  
h,i.j 

ck = -  ~ w~,jVo~,jvkh,j. 
h,i,j 

The calculation of the coefficients ahlq 

The absorption calculation routine is a modified ver- 
sion of the program DA TAP2 by Coppens; the method 
used by this program is described in detail elsewhere 
(Coppens, Leiserowitz & Rabinovich, 1965). 

In general, if the distances R0q to the defining planes 
of the crystal are incremented to R0q(1 +d~) then the 
increment d9 in any quantity ~0 may be expressed in 
the form 

d~0= ~ ~0qdq where ~0q= R~ (2) 
q o 

The Rq are regarded as independent variables and the 
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values of R~ Oqo/OR,~ are evaluated for the assumed 
crystal. From equation (1) we see 

1 (R a OAn,] 
/ o 

(3) 

It is necessary to express, at each stage in the calcula- 
tion of An~, the variables in terms of Rq, the components 
of the differential increment then follow from (2). 

The increment may be considered in two parts. That 
part associated with a change in the path length due 
to the change in position of the faces of incidence and 
emergence, and that correspondent with the change in 
position and weighted volume of the grid point. 

Consider the Gaussian integral and the approximate 
method used to evaluate it (Busing & Levy, 1957). 

Ibdx Id'X)dy g(x,y,z)dz I f(x,y) 

,)a de(x )  d(ex,y) 
m m ~  

~-- ~ ~ (b-a)  [d(x,)-c(xO] 
i=1 j = l  k= l  

× [f(x,yj)--e (x, yj)]R~RjRkg(x~,yj, z~) (4) 

where 

xt=a+(b-a)ui  (4a) 
y~ = c(x,) + [d(x,) - c(xi)]~! j (4b) 
Zk=e (xi,yj)+[f(xi,yj)--e (x, yj)]uk . (4c) 

The d(x,)~ values can be obtained similarly giving, 
from equation (4b) 

(YJ)q = C(Xi)q + [d(xi)~ - c(x / )a ]u j  • 

The limits e (x~,yj) and f (x ,  yj) of the integration over 
z are evaluated as the minimum and maximum values z. 
not external to the crystal, defined by one crystal de- 
fining plane and the planes x=x~, y=yj. Thus, 
e (x, yj) is of the form 

e (x i ,y j )  = o~7Rq7 + t~a(xi) + t~9(yj) 
and 

e (xi,yj)q=o~7Roq7t~qq7 -}- 0~8(Xi) q -{- t~9(yj)q . 

The f(x~,yj)~ values can be obtained similarly giving, 
from equation (4e) 

(z~)a= e (x~, yj)~ + [ f ( x ,  y fl~- e (x~, yj)a]uk . 

The weighted volume of the ijk element of the crystal 
is given by 

V~jk=(b-a) [d(x,)-c(x,)] [f(x,  y j ) - e  (x, yj)]R,RjRk 

and (Vijk),~ follows directly from equation (2) 

V ~bq-a~ 
( Vijk)q = ijk I b'= a 

d(x,)o-c(x,)~ f ( x . y j )q - -e  (xt,yj),t ] 
+ d(x,)-c(x,) + ~ : e ( x , , y ~ )  ~" 

Change in position of grid point 

The calculation of a and b, the limits of integration 
over x, depend on the intersection, at a point that is 
not external to the crystal, of three crystal defining 
planes, qx, q2 and qa. The maximum and minimum 
values o fx  so obtained yield b and a respectively. Thus, 
a is of the form 

a = oqR~ + o~2Rq2 + ~3Rq3 

where the c~'s are numerical constants, and 

a,~ = (R~ J - ~  ) o =°~lRoq,t~qql + ct2Roq2t~qq2-q-ct3Roaa6qq3 

where 

J~t = 0 for q ¢ ql and = 1 for q = qi. 

The b~ values can be obtained similarly giving, from 
equation (4a) 

(x,)q =aq +(ba-a~)u,. 

The limits c(xi) and d(xO of the integration over y 
depend on the intersection of two crystal defining 
planes and the plane x=x~. The maximum and min- 
imum values of y, not external to the crystal, yield 
d(xl) and c(x~) respectively. Thus, c(x3 is of the form 

and 
C(XI) = t~4Rq4 + t~sRq5 + cQxi 

c(xi)a=°~4Roa4t~a,i4 + cqR0~s~oa5 + c~6(x/)~ • 

Change in path length 

The incident and emergent path lengths rim and rijk2 
are given by an expression of the form 

r ~ jk = ~1Xi "~ fl2Yj + ~3 Zk "31- ~4 R,u 
where fl's are numerical constants. 
It follows that 

(r,jk). = & + & ( y A .  + 

A ijk = Vijk exp [--lz(r~m + r~jk2)] 
SO 

V~jk lu(rijkl)~--kt(rim)~}" 

Since the absorption coefficient is defined as 

A= A,A V, jk)-I 
i,j,k i,j,k 

we have 

Aq- i,.Lk i,j,k i,.Lk i,j,k 
( v ,  jk) 2 
i,j,k 

and AJA gives us the value of a~,ia [equation (3)] that 
we need for equation (1). 

The linear dependence of variables 

The residual is unaltered if In k i - l n  kj is replaced by 
In k d k - l n  kj/k. We can change our variables to 
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ln k , - l nk t= l~ ,  thus reducing the number of scale 
constant variables by one. 

- - - - -  i ¢ 1 .  
0l~ 3(ln k~) ' 

We also require the origin to be fixed in space for each 
crystal. Our method of doing this alters the covariance 
between the parameters dq but does not alter the size 
and shape of the corrected crystal. The fixing of the 
origin is achieved most easily by saying the distances 
Rq from the origin to three planes intersecting at a point 
must be fixed for each crystal. We thus set three values 
of dq identically equal to zero without error for each 
crystal. 

We now have the problem expressed in terms of 
linearly independent variables, achieved by simply de- 
leting the relevant rows and columns from the matrix 
of the least-squares equations. However, we still have 
to fix an overall scale constant for the data. 

Further redundancy in the equations may be acci- 
dentally introduced. For example, Weissenberg data 
about (100), (010), (001) and (111) axes for a F-centred 
crystal give zones in which h, k, l are either all even or all 
odd leading to a scale factor redundancy. Data col- 
lected about the [011] direction are necessary to remove 
this redundancy. 

E r r o r  a n a l y s i s  

Standard procedures are applicable for the unbiased 
estimation of the variance and covariance of the re- 
duced set of variable parameters required for linear 
independence. The variance of the nth parameter u, is 
given by 

var (u.) = a""a z 

while the covariance of the parameters u. and Um is 
given by 

COV (Un, U m ) = a n m ~  2 . 

a "m is the nm element of the inverse of the matrix of 
the least-squares equations for the linearly independent 
variables, and a z is the unbiased estimate of the vari- 
ance of an observation of unit weight, and should be 
unity for an absolute set of weights. 

cr2= ~ W, ijA~ij/(M- N) 
h,i,j 

where M is the total number of observations and N is 
the number of linearly independent variables. 

Let us consider now a least-squares correlation be- 
tween our corrected values of F~  and the truly correct 
values of Fh z 

R =  ~ W,~[ln ( ~ .  F~ , ) - ln  (FhZ)] z . 
h,i 

By saying OR/O In (F~,)= 0 we see that the least-squares 
estimate of ln  (F~) is ~W,i In (~hF~)/~W,~ where W~ ~ 

i i 
_ 2 4 - var [ln (F~,,)]=mZi=var (F~)/F~ k~ is an estimate 
of the overall scale constant for the ith zone. Thus 

var [In (F~)]=rnZ~=l/~m~ 2 where m~ z is zero, if FZ, is 
i 

unobserved in the ith zone. 
Likewise we can show that var (In ki) is i/~m~2 and 

h 
thus the best value of the overall scale constant is 
given by 

I n k =  ~ { ~ m ~  z l n k , } .  
i h 

From this result we can infer that we should fix the 
overall scale of the data in the original least-squares 
equations by saying ~{~mg} z In kt} is a constant with- 

i h 
out error, say zero. This enables us to evaluate how 
the scale constant errors are spread over the various 
zones of data, since 

m~ z In k j =  ~ m~2{(ln k j - l n  k l ) - ( l n  k , - l n  kl) 
h,i h,i 

+ In ki} 

= ~ rn~Z{(ln k j - l n  k 0 - ( l n  k , - l n  kl)} 
h,t 

+ constant 

if S. m~ 2 In k~ is set equal to a constant without error. 
h,i 

Thus, 

( ~ m~Z)2 var (ln kj) = ( ~ m~ 2) var (ln k j - l n  k0  
h,i h,i 

+ ~ ( ~ m~2) 2 var (In k , - l n  k~) 
i h 

-2 2m '2 mZ'cov(lnk,-ln k. lnk -lnk ) 
i ~ j  h h,k 

and 

m~ z coy (In kj, da) 
h,i 

= ~ m~2{cov( lnk j - lnk l ,  d q ) - c o v ( l n k i - l n k l ,  dq)} • 
h,i 

We should note that ~m~ z includes data not used in 
h 

correlations. 
It is often assumed that m~ =var  [In (F~a~)] and is 

simply the error arising from counting statistics. This 
can result in an over-emphasis of the reliability of in- 
tense reflexions by ignoring errors in crystal size and 
other errors such as secondary extinction which have 
not been considered here. Rather, since 

In (F~,,)=ln k , + l n  (FZoh,) - ~ ah,qa~ 
q 

+ other ignored terms 

m~,=var [In (F~h~)] + var (In k , )+  ~ aZ,q var (da) 
q 

+ 2 ~ a,,qah,q, coy (dq, d~,) 
q> q' 

- 2 ~ ahiq coy (In ki, dq) + other terms. 
q 
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Likewise Whu= 1/var (Am j), and though Whu may be 
approximated to by W~,u=l/(mZh~+m~,j), it also in- 
volves covariance terms. The variance-covariance ma- 
trix is unknown in the initial cycle and so the incor- 
poration of these ideas necessarily involves iterative 
procedures. 

Results and discussion 

To test the procedure described, 20 reflexions were ar- 
bitrarily chosen for an orthorhombic crystal with 
a=26.75, b=12.41, c=7.24 A; linear absorption co- 
efficient #=256  cm -~, 2=  1.54182 A. A reference crys- 
tal was chosen, its dimensions being defined by the 
planes (100), (TOO), (010), (0T0), (001), (00T), the spacing 
between parallel pairs of planes being 0.10, 0.18 and 
0.38 mm respectively. 

A four-circle geometry was selected, with the crystal 
mounted about the b axis (data set A) and the c axis 
(data set B). The intensities of data set B were all made 
to be 4 above the background. The intensities of data 
set A were chosen to give perfect agreement between 
the two data sets after correction had been made for 
both collection geometry and absorption. The absorp- 
tion was calculated for both data sets using the ref- 
erence crystal. 

Two incorrect crystals were chosen to test the ability 
of the program to bring these incorrect crystals back 
to the correct size (that is, the size of the reference crys- 
tal). The crystal for data set A was of dimensions 
0.09 x 0.18 x 0.38 mm and the crystal for data set B 
was of dimensions 0.10 × 0-14 × 0.38 mm. Unit weights 
were used. 

To test the success of correlations it is more useful 
to consider the quantity 

[ '~' W~ /t 2 "11/2 -i h U m  / / 
R '=exp  h , i , j  .~ / - - 1  :Zw,,,, j j 

h,i , j  

rather than R = ~ 2 R' WhUAhU. approximates to a root- 
h,i, j  

mean-square fractional difference between correlated 
reflexions. 

We note that for data set A only the distance to the 
(100) plane is altered, whereas for data set B only the 
distance to the (010) plane is altered from the correct 
dimension. In this way we can investigate the effect 
of the refinement on correct crystal dimensions when 
this dimension either is or is not correct in the other 
crystal. Also both crystals are of smaller volume than 
the reference crystal so that we can investigate whether 
the program brings each of the crystals back to an 
average crystal (of dimensions 0.095 × 0.16 × 0.38 mm) 
or back to the correct volume. 

In correlation 1 only scale constants were varied for 
a best least-squares fit. A value of R '=9 .27×  10 -z 
(9.3 %) was obtained. 

In correlation 2 the maximum number of parameters 
were varied, one scale constant and three planes per 

crystal. Correcting the data using the values of a~q 
previously obtained, a value of R '=7-99x  10 .3 was 
obtained. 

We can test the linearity of our expansion of 
In (AohJAj,) by using the values of d~ and In ki, which 
are known to be correct, to correlate the data. A value 
of R '=4 .06×  10 -2 was obtained. By not using the 
values of am~ but by recalculating the values of F~Z,~ 
using the scale constants and crystal dimensions indi- 
cated in correlation 2, a value of R'=2.13 x 10 -z was 
obtained. 

Correlation 3 was an iteration, recalculating the ab- 
sorption factors and the coefficients ah~ before again 
varying the maximum number of parameters. Using 
the new values of a~tq to make the corrections indicated, 
a value of R' =7.53 x 10 -4 was obtained. 

Agreement with the standard crystal was much im- 
proved. Details of the calculation are given in Tables 
1 and 2. 

We note that there is a definite tendency for the crys- 
tals to distort in a compensatory manner such that the 
correct ratio of dimensions between the two crystals 
is more closely approximated than the correct absolute 
values. Correlation 3 successfully corrected this fault 
though after correlation 2 the value of R' was already 
quite low. With data experimentally obtained the main 
advantages of iteration would be to obtain better values 
of a ~  to be used in a final least-squares structure re- 
finement using all independently observed Fobs values. 
This is feasible since 

or 

c3F, a ] ( c~ In F~, ] 
c~dq 10 = ½ ro,,, -~d~ .... 10 = - ½ Fon~a,,~ 

~F~ 
-- ½ FomamJRoq 3Roq 

and has the advantage that other errors may also be 
included, and any covariance correctly accounted for. 

The calculation of the values of ah~q does not in- 
crease the time involved for the absorption correction 
by more than 20 to 30 % though the storage require- 
ments are greatly increased since each grid point has 
associated with it the number of planes minus 2 par- 
ameters. 

The most time consuming step in the absorption 
program is in establishing the faces of incidence and 
emergence for each grid point, not in evaluating the 
distance to the correct plane. Obviously the more faces 
on the crystal the smaller the proportion of time used 
in evaluating the ah~q values. This is obviously faster 
than shifting the defining planes one at a time to 
evaluate the ah~q values. 

The ability to define the distance to the qth plane 
will depend approximately on the proportion of the 
total surface area associated with the qth plane. Dif- 
ficulties in the method can be envisaged when this 
proportion of the total area is too small. In the cases 
of tabular and needle crystals this can easily be rein- 
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edied by excluding those data obtained with geometries 
involving long pa th  lengths in the crystal, which can 
be done without  any loss of  availability of  data, by 
either using four-circle geometry or by remount ing the 
crystal about  another  axis. One would then not  a t tempt 
to refine those planes defining the long directions within 
the crystal and if the remaining directions are so small 
as to make the s tandard deviations of  the calculation 
of  Rq approach  Rq, then there is probably no need to 
modify the crystal size, nor  maybe to apply an ab- 
sorption correction at all. The procedure previously 
described was repeated for a thin crystal, see Table 3, 
using the same reflexions, unit-cell dimensions, and 
geometries as before. Only hkO reflexion data  about  
the c axis gave long distances in the crystal and, owing 

to the lack of  such data, the expected inaccuracies were 
evident. However, the refinement of  the data in the 
short  (001) direction was well behaved when hkO re- 
flexions were omit ted and the (001) spacings and one 
scale constant  were varied. 

There are two good arguments for applying a data 
correlat ion procedure early in refinement rather  than 
simply incorporat ing the parameters a,~q in a final struc- 
ture refinement. Firstly, if we have a non-centric space 
group and anomalous  scatterers cause [F(hkl)l 2 to no 
longer equal [F(hki)l z and we have to use more than 
one crystal, then this program should enable us to cor- 
rectly assign the hkl indices, even when large absorp- 
t ion corrections have to be made. Secondly, as dis- 
cussed earlier, a more realistic weighting system can be 

Table 1. Comparison o f F  z values 

Reference Data set Data set Correlation Correlation Correlation 
h k l crystal A B 1 2 3 
22 1 7 10.68 9.86 10.55 10.19 10.53 10.65 
4 0 5 133.20 110-22 111.81 111.02 131.92 132-53 

24 0 5 32.01 29.11 31.49 30.26 31.61 31.91 
6 l 7 120.86 109.03 108-52 108-72 118.46 120.30 

22 2 5 40.35 36.72 39.16 37.90 39.52 40.22 
10 6 4 85.75 79.31 73-24 76.18 81.91 85.29 
3 4 1 29.57 25.81 27.10 26.43 28.54 29.39 
6 0 0 38.72 32.10 26.95 29.40 37-73 38.53 

29 2 0 34.40 31.20 33.37 32.25 33.92 34.31 
7 1 0 38.70 32.86 28.28 30.47 37.48 38.52 
2 4 4 61.78 53.28 58.05 55.59 59.76 61-47 

10 5 5 91.07 83.67 78-74 81.13 87.75 90-66 
28 0 0 40.18 36.29 39-36 37.78 40.00 40.07 
13 2 2 67-85 62.57 55.87 59.10 65.26 67.51 
11 3 2 57.98 53.60 46.75 50.04 55.26 57"63 
15 0 0 44.58 39.90 40.67 40.27 44.22 44.44 
5 5 6 98.85 91.13 89.46 90.25 95.31 98.31 
2 3 4 56.44 48.07 52.49 50.21 54.66 56-11 
0 7 2 49.39 43.51 43.85 43.66 47-72 49.11 
1 1 1 11.03 8.73 9.99 9.34 10.69 10.97 

Table 2. Comparison of  crystal dimensions 
Spacing between parallel planes (mm), volume (mm3). 

Initial dimensions 
(a) Crystal for data set A Correlation 2 Correlation 3 Ideal dimensions 
(100) 0.090000 0.098547 0.099732 0.100000 
(010) 0.180000 0.165360 0.178720 0.180000 
(001) 0.380000 0.378293 0-378928 0.380000 
Volume 0.006156 0.006165 0.006751 0.006840 

(b) Crystal for data set B 
(100) 0.100000 0.098845 0.099870 0.100000 
(010) 0.140000 0-169718 0.178185 0.180000 
(001) 0.380000 0.371703 0.378298 0.380000 
Volume 0.005220 0.006233 0.006766 0.006840 

(c) Ratio of dimensions (crystal for data set A/crystal for data set B) 
(100) 0.900 0.997 0.999 1.000 
(010) 1.286 0.975 0.997 1.000 
(001) 1.000 1.017 1.002 1.000 
Volume 1.180 0.989 0.998 1-000 

(d) Ratio of dimensions (mean of crystal for data sets A and B/ideal crystal) 
(100) 0.950 0.987 0.998 1.000 
(010) 0.889 0.930 0.994 1.000 
(001) 1.000 0.987 0.996 1.000 
Volume 0.831 0.906 0.988 1.000 
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Table 3. Refinement of a thin crystal 
Dimensions in mm. Dimensions (1) are from a single-cycle least-squares refinement varying all allowed parameters. Dimensions 

(2) are from a single-cycle least-squares refinement omitting (hkO) reflexions from data set B'. 

Initial dimensions 
Data set A'(b rotation axis) Dimensions (1) Dimensions (2) Ideal Dimensions 
(100) 0.096000 0.089645 0.096000 0.100000 
(010) 0.140000 0.192937 0.140000 0-140000 
(001) 0.004000 0.001590 0.001588 0.002000 

Data set B'(c rotation axis) 
(100) 0.100000 0.098257 0.100000 0.100000 
(010) 0.144000 0-140046 0.144000 0.140000 
(001) 0.004000 0.001600 0.001590 0.002000 

obtained by evaluating the random error implicit  in 
the absorption correction. 

Extension of  the methods here, differentiating the 
absorpt ion correction for the addit ional  parameters in- 
volved for the case of  a crystal in the presence of  its 
mother  l iquor in a capillary (Wells, 1960) appears 
quite feasible. 

It should be noted that using a four-circle geometry, 
geometrically different measurements  of  F~, may be 
made for a single zone. We could label these observa- 
tions: 

Ao~,, 
• . t  2 F0h,, 

where the i '  refers to the i'th observation of  FI z, in the 
i th  zone. 

R= Z Wh,ji,j,(ln F~,u,-ln F~,jj,} z 
h,i, Zi ' , j '  

and our simultaneous equations are 

OR 
. . . . .  0 as before. 

Out, 

The arguments used are still true if  we only have 
one data zone and 

R =  ~ W~,,~,{ln (F~,, ,)-ln (F~v)} z 
h,i',j '  

where i '  and j '  refer to geometrically different meas- 
urements in one zone. The one scale constant kl is set 
to unity. 
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X-ray Compton-Raman scattering is reviewed from an original point of view. The differential cross 
section for X-ray inelastic scattering from crystals is derived from first principles to explain the coexisting 
Compton and Raman scattering in solids. This derivation makes it possible to express the cross section 
in terms of the current correlation of electrons in a crystal. All the electrons, including the core electrons, 
axe treated on an equal basis in this formulation. The relationship between the X-ray absorption 
spectrum and the inelastic scattering spectrum is discussed in detail. This formulation provides a theo- 
retical justification to the importance of X-ray inelastic scattering experiments in connection with an 
experimental determination of the two-particle Green's function. In the Appendices the theoretical 
formulations are given in detail, which apply not only to the ordinary inelastic scattering process, but 
also to the processes involving Bragg diffraction. 

1. Introduction 

Recently, interest in X-ray inelastic scattering from 
crystals has been renewed for several reasons. F rom a 

theoretical point  of  view, this scattering process may  
be used to check the validity of  the one electron model  
in solids, and to study the many body effects, i f  any, 
among the electrons. F rom an experimental  point  of  


